
World Transactions on Engineering and Technology Education 2003 UICEE
Vol.2, No.1, 2003

 45

INTRODUCTION

Critical to an organisation’s success is an effective software
development strategy that can assist it in accomplishing its key
business objectives. This incorporates the effective use of
resources, better time-to-market and adaptation to the changes
in differing business needs and requirements.

There has been a rapidly rising level of demand for more
flexible, adaptable, extensible and robust complex enterprise
software systems, which cannot be achieved unless software
development makes a transition from a craft activity that
involves an informal type of reuse (eg code sharing and design
patterns), towards a modern industrial process that is capable of
using systematic reuse strategies.

Systematic Reuse Strategy

A systematic reuse strategy emphasises reuse throughout the
software development lifecycle, as well as the reuse of highly
flexible software components across multiple applications and
projects. Traditional software development strategies and
engineering methodologies, which require the development of
software systems from scratch, fall short in this regard.
Component-Based Software Development (CBSD) and Agent-
Oriented Software Development (AOSD), which extends
CBSD, offer attractive alternatives in order to develop complex
enterprise software systems that are flexible, adaptable,
extensible and robust.

Component-Based Software Development

CBSD is based on developing and evolving software systems
from selected pre-engineered and pre-tested reusable software
components, then assembling them within appropriate software
architectures. The CBSD approach delivers the promise of

large-scale software reuse by promoting the use of software
components built by various developers (ie commercial
vendors and in-house software developers). CBSD has great
potential to reduce enterprise software development costs and
time-to-market, while also improving reliability, maintainability
and overall quality of enterprise software systems.

AOSD extends CBSD; it allows developers to use a set of high-
level, flexible abstractions to represent a variety of enterprise
software systems. The rapid integration of distributed agents
provides opportunities to build enterprise software systems. A
software agent component (also known as an agent) is a
specialised component that exhibits a combination of several of
the following characteristics:

• Autonomous;
• Adaptable;
• Mobile;
• Knowledgeable;
• Collaborative;
• Persistent.

Furthermore, agents offer greater flexibility and adaptability
than traditional components [1].

Making a Transition to Component-Based Development

The availability and growing popularity of component
technologies, such as JavaBeans, Enterprise JavaBeans (EJB)
and .NET, have helped facilitate the transition from traditional
software development to CBSD. However, using component
technologies and methodologies is not sufficient for
establishing component-based software engineering business.

Making a transition from traditional software development to
CBSD/AOSD requires explicitly defining software reuse in

Component-based development refining the blueprint of software engineering education

Gilda Pour

San José State University
San José, United States of America

ABSTRACT: An effective software development strategy is critical to an organisation’s success in achieving its key business
objectives, including the effective use of resources, better time-to-market and adaptation to changes in business needs and
requirements. Rapidly rising demand for more flexible, adaptable, extensible and robust complex enterprise software systems cannot
be met unless software development makes a transition from a craft activity, involving informal kind of reuse (eg code sharing and
design patterns), to a modern industrial process capable of using systematic reuse strategies based on Component-Based Software
Development (CBSD) and Agent-Oriented Software Development (AOSD), which extends CBSD. The paper discusses the necessity
of refining the blueprint of software engineering education in order to make the transition from traditional software development to
CBSD and AOSD. The paper also presents a new practical approach for increasing the effectiveness of the learning experience by
integrating CBSD/AOSD research into the software engineering curriculum and providing students with the foundation for life-long
learning to help enable them to expand their engineering knowledge and skills throughout their careers.

 46

software lifecycle processes in order to allow an organisation to
exploit, systematically and repeatedly, reuse opportunities in
multiple software projects and software products. Without such
a repetition, any improvement to the software lifecycle and
software products, which result from large-scale software reuse
based upon CBSD/AOSD, will be limited and often
disappointing [2-4].

INTEGRATING COMPONENT-BASED DEVELOPMENT
INTO SOFTWARE ENGINEERING CURRICULUM

In order to prepare software engineering graduates to
practice component-based and agent-oriented software
engineering, it is necessary to integrate CBSD and AOSD
into the software engineering curriculum. This would
incorporate emphasis on the differences between the traditional
software development lifecycle and the CBSD/AOSD
lifecycle, new software engineering roles requiring new
competences and skills, technical and non-technical issues
facing CBSD/AOSD, as well as ways to address these issues
[5][6].

New Roles Requiring New Competencies and Skills

The CBSD/AOSD lifecycle differs from the traditional
software development lifecycle in many ways. For instance, the
following elements are part of CBSD:

• The design phase involves selecting and customising

enterprise software architectures and a set of software
components. It also requires system developers to architect
and design extensibility and scalability into the enterprise
system and all its subsystems.

• The implementation phase involves building software,
such as wrappers and mediators, to support the required
interactions among various software components within
appropriate software architectures.

• The testing phase involves addressing issues raised by the
late integration of components that have been developed
by others, and the lack of confidence in, and understanding
of, components built by others.

• The maintenance and evolution phase involves addressing
issues raised by the lack of confidence in, and
understanding of, components built by others, etc.

Furthermore, three main categories of processes have been
identified in CBSD/AOSD, as follows:

• The component system engineering process staffed by a

team for each component system.

• The application system engineering process staffed by a
team for each application system.

• The application family engineering process staffed by a
team for the entire layered system, which is particularly
focused on defining the division into systems and the
interfaces between them in order to support system
interoperability [2][3].

Due to the above-referenced key differences between the
traditional software development approach and CBSD/AOSD,
different sets of competences and skills are required of software
engineers when working in different phases of the software
development lifecycle and different categories of CBSD/AOSD
processes.

It is essential to provide educational and training opportunities
for software engineering students and professionals to
understand the differences between the traditional software
development approach and CBSD/AOSD, and to acquire new
competences and skills that are required for practising CBSD
and AOSD. Table 1 shows a list of different competency units
in CBSD and the related types of workers.

Table 1: Competency units and worker types for CBSD.

Competency Units Worker Types
Requirements
Capture Unit

• Use case engineer
• GUI coordinator
• GUI engineer

Design Unit • Subsystem engineer
• Use case designer
• Design subsystem engineer

Testing Unit • Tester
• Test engineer

Component
Engineering Unit

• Reuse process engineer
• Reuse support environment

engineer
• Façade engineer

Architecture Unit • Architect
• Lead architect
• Distribution engineer

Component Support
Unit

• Component system trainer
• Component system supporter
• Component system librarian

The learning opportunity can be provided through a team-based
term project and assignments that emphasise both the
theoretical and practical aspects of the course topics in any one
of the courses in the new course sequence on CBSD and
AOSD.

It is critically important to build a foundation for life-long
learning to help enable software engineering students to
enhance their engineering competency and skills throughout
their careers. It is also essential to highlight the relationship
between software engineering and enterprise applications [7].
Further, other factors that need to be accentuated include: a
broader understanding of information technology, systematic
thinking, cooperative problem solving, the ability to
communicate effectively, a systems view of problem solving
and technical and economic decision making that is required in
enterprise software development.

Integrating Research into Software Engineering Education

To stimulate innovative educational activities in the software
engineering discipline, and to increase the effectiveness of
students’ learning experiences, it is essential to integrate
CBSD/AOSD research into software engineering courses and
curricula.

The research may be ongoing or completed, and may be drawn
from any research project in the software engineering field. The
author has integrated the results of her research into the new
CBSD/AOSD course sequence that she has developed [8-11].
This work has been accomplished as a part of her multi-year
project, which has focused on integrating CBSD and AOSD
into the software engineering curriculum.

 47

In addition, the author has integrated the results of
comprehensive experimental research carried out by Ivar
Jacobson and Martin Griss, two distinguished experts in
modern software engineering, into a new course on component-
based software engineering.

Jacobson and Griss have been deeply involved with major
reuse efforts at Ericsson and Hewlett-Packard Company, and
have closely examined the experience of a number of other
large organisations with software reuse programmes [2].
Jacobson and Griss have reported several technical and non-
technical issues that block or hinder the transition from
traditional software development to CBSD [2]. The issues are
categorised as follows:

• Business-oriented issues that are due to the lack of

adequate funding for initial investment, education and
training, and access to vendor-supplied components; the
lack of convincing business case and economic model for
long term investment, and clear definition of product-line
mode and features.

• Process-related issues that are due to low process maturity
of the organisation, ill-defined or unfamiliar reuse-oriented
methods and processes, new inter-group coordination and
management needs, well tested and documented methods
and models to relate features to component sets and
variability, etc.

• Organisational issues that are due to the lack of a
systematic practice for reuse activities and enterprise
component development, lack of management expertise
and support, etc.

• Engineering issues that are mainly due to the lack of
adequate techniques and tools to identify, design,
document, test, package and categorise software
components; the lack of adequate and well understood
standard patterns and architectures, etc.

• Infrastructure-related issues that are due to the lack of
widespread use of common tools, base components,
standardised design notation, such as the UML, different
programming languages and environments, support for
multi-group configuration management, etc.

To address the above-referenced issues raised in the transition
from traditional software development approach to enterprise-
wide reuse business based upon CBSD, Jacobson and Griss
developed a systematic and incremental transition process to
CBSD [2]. Their experimental research has concluded that it is
critically important to obtain the support of both management
and software development teams for the systematic and
incremental transition process.

It is essential to involve customers, users and maintainers at
an early stage in the systematic transition process. The
emphasis should be on component-based infrastructure and
architecture [12]. Other factors include a strong level
of commitment from top management in order to provide the
required support and investment for the practice of developing
families of complex software systems from well-designed and
architected reusable software components, organisational
support for reuse efforts, a stable application domain,
standards; as well as the required level of education and
training.

Major elements of the transition process are as follows:

• An assessment of business, process, domain and
organisational readiness for component-based software
engineering.

• The design of a multi-step, pilot-driven transition plan to
install the new process into an existing software
engineering organisation.

• The customisation of the generic component-based
engineering enterprise and organisation design.

• The use of well-designed architectures for family
applications in order to support the customisation required
for the development of component-based enterprise
software systems.

• Testing, tool development and deployment.

This systematic and incremental transition process has been put
into practice at Hewlett-Packard Company and Ericsson for the
past several years. It has produced incredible results, including
major development time and cost savings and product quality
improvements [2].

Moreover, other industries have all reported major benefits
including significant cost and time savings from a systematic
and incremental transition process to CBSD. These include the
following:

• The aerospace industry (eg Boeing and Lockheed);
• Computer companies (eg Hewlett-Packard, IBM,

Microsoft and Toshiba);
• Banking (eg Citicorp, Chemical Bank, First Boston,

Montreal Trust and Mellon Bank);
• Government bodies (the Army, Air Force, NASA and

Navy);
• Insurance companies (eg Hartford, Northwest Mutual Life

and USAA);
• Manufacturing enterprises (Hewlett-Packard, Foxboro and

NEC);
• The telecommunication industry (eg AT&T, BNR,

Ellemtel-Ericsson, GTE, Motorola, NEC, NTT, PacBel,
Sprint and MCI);

• Utilities (eg NEC and Sema-Metra) [2][11].

In almost all cases of successful enterprise reuse, the keys have
been management support, system and component architecture,
a dedicated component group, stable application domain
standards and organisational support.

Industrial-Academic Partnership in Education and Research

A deep, sustained partnership encourages the development of
more effective software engineering education programmes and
ensures that university research will have greater access to, and
influence on, industrial-scale development. The goal is to get
the best of both worlds: industrial involvement and advice and
academia’s long-term view of what makes up quality education.
This emphasis on the long-term view is what differentiates the
partnership in education from a training exercise [13].

Because many large companies have had to mount significant
software engineering training programmes, mainly due to the
dearth of software engineering education at the college
level, they should be more than willing to assist in nurturing
software engineering programmes that emphasise the
development of core competences and skills required for CBSD
and AOSD.

 48

Effective industry involvement is not trivial; goals and
investments must match. Typically, academia wants to
emphasise fundamentals and concepts, as well as life-long
learning, while industry focuses on acquiring skills in order to
fill an immediate need. The key is to achieve the right balance
and there is often more than one way to achieve that. However,
it is important that institutions provide opportunities where
individuals may concurrently assume responsibilities as
researchers, educators and students; and where all can engage
in joint efforts to enrich both research and education.

The partnership should focus on helping universities arrive at
the appropriate balance between fundamental knowledge and
its engineering applications [13].

Integrating Diversity into Term Projects

It is important to provide opportunities for software engineering
students to learn how to work and contribute effectively within
a diverse team of software engineers and IT professionals. This
learning opportunity can be provided through term projects and
class activities.

CONCLUDING REMARKS

In order to meet the ever-increasing demand for more flexible,
adaptable, extensible and robust complex enterprise software
systems, software development has to make a transition from a
craft activity involving an informal kind of reuse to a modern
industrial process that is capable of using systematic reuse
strategies based on Component-Based Software Development
(CBSD) and Agent-Oriented Software Development (AOSD).

A key element in making the transition to CBSD/AOSD is
refining software engineering education so as to ensure
software engineering students and professionals acquire the
knowledge, competences and skills that are required for
practicing CBSD and AOSD.

It is critically important to the success of software engineering
education and the profession to integrate the results of related
research as well as the fundamentals and key concepts of CBSD
into the software engineering curriculum [14]. It is also
essential to ensure that graduates of software engineering
programmes have the necessary foundation for life-long
learning so as to help enable them to expand their engineering
knowledge, competences and skills throughout their careers. It
is also essential to provide opportunities for software
engineering students to practice and learn how to work and
communicate effectively within a diverse group.

To refine software engineering education and advance the
software engineering discipline, industry-academia partnerships
in education and research play a major role. The focus of the
partnership should be on helping universities develop and

implement educational and training programmes with the
appropriate balance between fundamental knowledge and its
engineering applications. To do so, institutions should provide
opportunities for researchers, educators and students to engage
in joint projects, internships and fellowships in order to enrich
both research and education.

REFERENCES

1. Griss, M. and Pour, G., Accelerating development with

agent components. IEEE Computer, 34, 5, 37-43 (2001).
2. Jacobson, I., Griss, M. and Jonsson, P., Software Reuse:

Architecture, Process and Organization for Business
Success. Reading: Addison Wesley (1997).

3. Pour, G., Griss, M. and Favaro, J., Making the transition to
component-based enterprise software development:
overcoming the obstacles - patterns for success. TOOLS,
29, 6, 419-420 (1999).

4. Pour, G., Component-based software development: new
challenges and opportunities. TOOLS, 26, 8, 376-383
(1998).

5. Pour, G., An innovative approach to integrating research
into education in Component-Based Software Engineering
(CBSE). Proc. 6th UICEE Annual Conf. on Engng. Educ.,
Cairns, Australia, 105-108 (2003).

6. Pour, G., Integrating agent-oriented enterprise software
engineering into software engineering curriculum. Proc.
Frontiers in Educ. Conf., Boston, USA (2002).

7. Murch, R. and Johnson, T., Intelligent Software Agents.
Englewood Cliffs: Prentice Hall (1999).

8. Pour, G., Web-Based Architecture for Component-Based
Application Generators. Internet Computing Series, 403-
409 (2002).

9. Pour, G., Component Technologies: Expanding the
Possibilities for Component-Based Development of Web-
Based Enterprise Applications. In: Furht, B. (Ed.)
Handbook of Internet Computing. Boca Raton: CRC Press
(2000).

10. Pour, G., Web-Based Multi-Agent Architecture for
Software Development Formal Peer Inspection. In:
Mohammadian, M. (Ed.), Computational Intelligence for
Modelling, Control and Automation Series. Burke: IOS
Press (2003).

11. Pour, G. and Hong, A., Internet-Based Multi-Agent
Framework for Software Service Retrieval and Delivery.
In: Mohammadian, M. (Ed.), Computational Intelligence
for Modelling and Control Series. Burke: IOS Press
(2003).

12. Lim, W., Managing Software Reuse. Englewood Cliffs:
Prentice Hall (1998).

13. Pour, G., Griss, M. and Lutz, M., The push to make
software engineering respectable. IEEE Computer, 33, 5,
35-43 (2000).

14. Brown, A., Large-Scale Component-Based Development.
Englewood Cliffs: Prentice Hall (2000).

	Component-based development refining the blueprint of software engineering education

